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Dominant intermediate Charcot-Marie-Tooth (DI-CMT) neuropathy is a genetic and phenotypic variant of classical
CMT, characterized by intermediate nerve conduction velocities and histological evidence of both axonal and de-
myelinating features. We report two unrelated families with intermediate CMT linked to a novel locus on chromosome
1p34-p35 (DI-CMTC). The combined haplotype analysis in both families localized the DI-CMTC gene within a
6.3-cM linkage interval flanked by markers D152787 and D152830. The functional and positional candidate genes,
Syndecan 3 (SDC3), and lysosomal-associated multispanning membrane protein 5 (LAPTMS) were excluded for

pathogenic mutations.

Charcot-Marie-Tooth disease (CMT [MIM 118300]) is a
clinically heterogeneous hereditary peripheral neuropathy
characterized by progressive weakness and atrophy of the
distal limb muscles, sensory abnormalities, and absent
deep-tendon reflexes (Dyck et al. 1993). Most frequently,
CMT is transmitted as a dominant trait. Since CMT af-
fects ~1 in 2,500 individuals, it represents one of the most
common inherited neuromuscular disorders (Skre 1974).
On the basis of electrophysiological and histopathological
criteria, CMT neuropathy is divided into two major clini-
cal entities. CMT type 1 (CMT1), the demyelinating form,
is characterized by median motor nerve—conduction ve-
locities (NCVs) <38m/s. CMT type 2 (CMT2), the axonal
form, is characterized by normal or slightly reduced motor
NCVs (Harding and Thomas 1980). However, in some
families with CMT, patients have median motor NCVs
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with a range of 25-45m/s and are therefore difficult to
classify using traditional electrophysiological criteria. One
proposal has been to designate this type of CMT “inter-
mediate CMT” (Davis et al. 1978).

CMT shows extensive genetic heterogeneity. Disease-
causing mutations have been reported in different genes
with a wide range of biological functions (Inherited Pe-
ripheral Neuropathies Mutation Database). The majority
of patients with CMT1 have a 1.5-Mb tandem dupli-
cation on chromosome 17p11.2-p12 (CMT1A [MIM
118220]) (Lupski et al. 1991; Raeymaekers et al. 1991)
that harbors the peripheral myelin protein 22 gene
(PMP22 [MIM 601097]) (Matsunami et al. 1992; Patel
et al. 1992; Timmerman et al. 1992; Valentijn et al.
1992b). Furthermore, mutations in the following genes
have been found to cause various types of dominant
CMT1 and CMT2: PMP22 in CMT1A (Valentijn et al.
19924), myelin protein zero (MPZ/P0 [MIM 159440]) in
CMT1B (MIM 118200) (Hayasaka et al. 1993), lipo-
polysaccharide-induced tumor necrosis factor-a (LI-
TAF/SIPMLE [MIM 603795]) in CMT1C (MIM
601098) (Street et al. 2003), early-growth-response ele-
ment 2 (EGR2 [MIM 129010]) in CMT1D (MIM
607678) (Warner et al. 1998), connexin 32 (Cx32/GJ]B1
[MIM 304040]) in CMTX1 (MIM 302800) (Bergoffen
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et al. 1993), kinesin family member 1B (KIF1B [MIM
605995]) in CMT2A (MIM 118210) (Zhao et al. 2001),
RAS-associated protein RAB7 (RAB7 [MIM 602298])
in CMT2B (MIM 600882) (Verhoeven et al. 2003), gly-
cyl tRNA synthetase (GARS [MIM 600287]) (Antonellis
et al. 2003) in CMT2D (MIM 601472) (Ionasescu et al.
1996), and neurofilament light chain (NF-L [MIM
162280]) in CMT2E (MIM 607684) (Mersiyanova et al.
2000). So far, the genes involved in CMT2C (MIM
606071) on 12g23-g24 (Klein et al. 2003) and CMT2F
(MIM 606595) on 7q11-g21 (Ismailov et al. 2001) re-
main to be found.

Recently, linkage was reported in two families with
intermediate CMT. The first locus for dominant inter-
mediate CMT (DI-CMT) was mapped to 10q24.1-g25.1
(DI-CMTA [MIM 606483) in an Italian family (Verhoe-
ven et al. 2001), and the second locus was mapped to
19p12-p13.2 (DI-CMTB [MIM 606482) in an Australian
pedigree (Kennerson et al. 2001). To date, no gene for
DI-CMT has been identified. Here, we report a novel
locus for DI-CMTC, mapping to chromosome 1p34-p35
in two unrelated large pedigrees from Bulgaria and the
United States.

The American family (CMT-160) contained affected
members in four generations (fig. 1A). Its founders origi-
nated from northeast Germany and were of German and
Polish origin. The age at onset in the 15 patients was
mainly in the 1st and 2nd decades. The most common
initial complaints were distal leg and arm weakness and
numbness. Although motor symptoms predominated,
sensory signs were also prominent. Men and women were
similarly affected. The motor median NCVs had a range
of 30-40 m/s. Sural nerve biopsies from three genera-
tions demonstrated clusters of regenerating fibers and
age-dependent reduction in fiber density and myelin
thickness but no onion bulbs.

The Bulgarian family (CMT-176) contained affected
members with a motor and sensory neuropathy in seven
generations (fig. 1B). In all 19 patients, motor symptoms
and lower limb involvement predominated. Disease on-
set (weakness of the feet, gait disturbance, and foot de-
formities) varied with an age range of 7-59 years. The
clinical features showed some gender differences, with a
relatively milder involvement in women. Median motor
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NCVs had a range between 33 m/s and normal. We could
trace the family history to 1850, when two affected sib-
lings (II.1 and I1.3) founded the two large branches of the
pedigree. Some of the pedigree members (descendants
from individual II.3) live in and around the town of Lom,
about which a novel type of recessive inherited peripheral
neuropathy was reported in Bulgarian Gypsies (HMSN-
Lom [MIM 601455]) (Kalaydjieva et al. 1996). However,
the members of family CMT-176 are of Bulgarian origin
and have a genetically and clinically distinct CMT phe-
notype. The remaining part of the family lived in several
towns in northwest Bulgaria.

For molecular genetic studies, genomic DNA of mem-
bers of families CMT-160 and CMT-176 was extracted
from peripheral blood samples by use of standard pro-
cedures. Informed consent was obtained, according to the
Declaration of Helsinki and protocols approved by the
institutional review boards of Sofia Medical University
and St. Louis University. Initially, we excluded the
CMT1A duplication/HNPP deletion and disease-causing
mutations in genes that are implicated in the most com-
mon types of CMT; that is, PMP22, MPZ, Cx32, and
EGR2. In addition, we excluded linkage to the CMT1A,
CMT1B, CMT2D, CMT2E, DI-CMTA, and DI-CMTB
loci by STR analysis (data not shown). Since simulation
linkage studies with SLINK (Ott 1989; Weeks et al. 1990)
indicated that families CMT-160 and CMT-176 had
enough power to demonstrate significant linkage (Z >
3.0 atd = 0.0), we performed a genomewide search using
the 382 STR markers of the ABI Prism Linkage Mapping
Set, v2.5 (Applied Biosystems), spaced at average intervals
of 10 cM. In both families, we detected linkage with
marker D1S255 on chromosome 1p35. Additional STR
markers were selected from the ABI Prism linkage map-
ping set HD-5 and the Marshfield chromosome 1 sex-
averaged linkage map (Marshfield Center for Medical Ge-
netics) and were genotyped (fig. 2). Several markers gave
significant positive two-point LOD scores (i.e., Z > 3.0 at
6 = 0.0) in both pedigrees (table 1). The maximal cu-
mulative LOD score (Z,,,, = 12.20 at 6 = 0.0) was ob-
tained at D1S233. The haplotypes were constructed with
the STR alleles, according to the marker order reported
by the Marshfield chromosome 1 sex-averaged linkage
map and the NCBI Map Viewer (build 33). In family

Figure 1

Haplotype analysis in pedigrees CMT-160 (A) and CMT-176 (B). Pedigree structures and sex of patients were disguised to

preserve anonymity. For reasons of confidentiality, we did not reveal the genotypes of the asymptomatic individuals in the youngest generations.
These persons were also excluded from the linkage calculations. Patient CMT-176.V.12 was considered to have unknown disease status, since
no NCVs were available. Patient CMT-176.VIL.3 shared the disease-associated haplotype of family CMT-176 but had a 2-bp difference in the
allele size of marker D1S234, probably owing to Tag DNA polymerase slippage during PCR. Markers were PCR amplified on a PTC-220 DNA
Engine DYAD (M] Research) and were pooled using a Beckman Biomek workstation. Fragment analysis was performed by capillary electro-
phoresis on an ABI PRISM 3700 DNA analyzer and was processed with GeneScan Analysis, version 3.5, and Genotyper, version 3.7, software
(Applied Biosystems). Alleles were sized according to the CEPH control DNA (1347.02) and are shown in base pairs. STR markers are ordered
from telomere (top) to centromere (bottom). Unblackened diamond = unaffected; blackened diamond = affected; half-blackened diamond =
unknown status; slashed diamond = deceased; arrow = recombination event; box = disease-associated haplotype; 0 = failed genotype.
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Figure 2 Sex-averaged linkage map of chromosome 1p34-p36
markers used in the present study. The genetic position of each marker
(in ¢M) is obtained from the Marshfield chromosome 1 sex-averaged
linkage map. Markers defining the DI-CMTC region are shown in
boldface type. Arrows delineate the CMT2A locus, as defined by Ben
Othmane et al. (1993) and Saito et al. (1997), and the DI-CMTC
locus, as defined in the present study by the genetic analysis of families
CMT-160 and CMT-176. SDC3 and LAPTMS are positional candi-
date genes for DI-CMTC. KIF1B is the gene mutated in CMT2A (Zhao
et al. 2001).

CMT-160, we found a disease-associated haplotype
(227-200-100-115) with four STR markers: D15233-
D1S2830-D1S255-D152892 (fig. 1A). Individual CMT-
160.11.9 inherited a recombinant chromosome between
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markers D152787 and D1S233, indicating that D1S2787
is the distal flanking marker. In family CMT-176, several
recombination events were found that limit the disease-
associated haplotype (111-279-163-221) to four markers:
D1S2734-D1S234-D1S2787-D1S233. Patients CMT-
176.V.16 and CMT-176.V1L.5 transmitted a chromosome
recombining between markers D15233 and D152830 and
therefore defining D1S2830 as the proximal flanking
marker. The combined analysis of key recombinants in
both families showed a minimal genetic region of 6.3 cM,
flanked distally by D152787 and proximally by D152830
(fig. 2). The two families do not share a common disease-
associated haplotype, which indicates that the mutations
underlying DI-CMTC arose independently in the families.

The DI-CMTC region on chromosome 1p34-p35 is
covered by five sequenced NT contigs (NT_037485,
NT_077385, NT_004538, NT_077923, and NT_
004511) and contains >100 genes, according to build
33 of the NCBI MapViewer. As the positional and func-
tional candidate gene, we first screened Syndecan 3 (SDC3
[GenBank accession number NM_014654]), which codes
for a heparan sulfate proteoglycan and is expressed dur-
ing early postnatal development in the nervous tissues
(Carey 1996). The SDC3 coding region and its flanking
intronic nucleotide sequences were sequenced on the ge-
nomic DNA level in four affected individuals from both
families with DI-CMTC and in two normal control in-
dividuals, but no disease-associated mutations were de-
tected (table A [online only]). However we found three
coding SNPs (NCBI SNP cluster rs2491132, rs4949184,
and rs1539360). Since several patients in both families
were heterozygous for the SNP alleles, we do not expect
genomic deletions in the SDC3 gene. In addition, se-
quencing of cDNA (SuperScript first strand synthesis sys-
tem for RT-PCR [Invitrogen]), obtained from transformed
lymphoblast cell lines of patient CMT-176.VL.3, revealed
no alternative spliced variants (table A [online only]). Fur-
thermore, we sequenced on the genomic DNA level the
Lysosomal-associated multispanning membrane protein 5
(LAPTMS [GenBank accession number NM_006762])
(Adra et al. 1996) gene—a positional candidate in the DI-
CMT region (table A [online only]). We observed one
coding SNP and one noncoding SNP in the gene (NCBI
SNP cluster rs1050663 and rs3795438); however, we
found no sequence variations that cosegregate with the
phenotype in both families.

The DI-CMTC locus is the second locus for CMT on
the short arm of chromosome 1. It is interesting that the
CMT2A locus maps on 1p35-p36 (Ben Othmane et al.
1993) and that a missense mutation in the KIF1B gene
was found in a Japanese family with CMT2A (Zhao et
al. 2001) (fig. 2). Two lines of evidence indicate that
there are separate loci for DI-CMTC and CMT2A that
do not overlap. First, CMT2A maps 26 cM distally
to D152787, the flanking marker of the DI-CMTC locus.
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Table 1

Two-Point LOD Scores between the Dominant Intermediate CMT Type C Locus
and STR Markers on Chromosome 1p34-p36

LOD SCORE AT 6 =

MARKER
AND FAMILY .0 .001 .01 .05 .10 .20 .30 40
D1S199:

CMT-160 -12.30 —-8.26 —4.07 -1.06 .04 .76 .77 43

CMT-176 -5.52 17 2.07 3.02 3.05 2.44 1.55 .68
D1S2864:

CMT-160 -4.09 -3.68 -1.91 -.60 —.12 22 28 .20

CMT-176 .66 3.04 3.94 4.18 3.86 2.84 1.68 .66
D1S2734:

CMT-160 -10.30 -6.31 -—-2.37 13 .96 1.35 1.13 .58

CMT-176 6.58 6.57 6.45 5.89 5.18 3.73 2.27 .95
D1S234:

CMT-160 -10.30 —3.31 -.38 1.41 1.91 1.95 1.50 .75

CMT-176 6.05 6.04 5.90 5.30  4.54  3.00 1.56 .50
D1S2787:

CMT-160 2.21 2.21 2.17 2.00 1.78 1.31 .80 .30

CMT-176 4.26 4.25 4.16 3.77 326 224 1.29 51
D1S2781:

CMT-160 4.18 4.18 4.12 3.85 3.50 274 1.87 .88

CMT-176 5.96 5.95 5.87 5.44  4.86 3.60 2.28 1.03
D1S233:

CMT-160 5.39 5.38 5.31 497  4.52 3.55 2.46 1.19

CMT-176 6.81 6.80 6.69 6.16 5.46 3.98 2.47 1.07
D1S2830:

CMT-160 3.88 3.88 3.82 3.56 3.2 2.50 1.69 .77

CMT-176 —4.45 1.07 2.98 3.94 394 320 212 .99
D1S255:

CMT-160 4.89 4.89 4.82 4.51 410 3.21 2.21 1.06

CMT-176 3.37 3.36 3.31 3.04 2.66 1.86 1.10 47
D1S2892:

CMT-160 5.39 5.38 5.31 497  4.52 3.55 2.46 1.19

CMT-176 .26 2.77 3.70 4.05 3.86 3.05 2.03 .97
D1S2713:

CMT-160 —.60 -.31 1.32 2.41 2.61 2.35 1.72 .84

CMT-176 -.89 1.78 1.34 1.99 2.08 1.73 1.15 .54
D1S2652:

CMT-160 -4.09 -3.84 -2.20 —-.88 —-.37 .02 .14 12

CMT-176 -6.56 —524 -324 -132 -—-63 -—-.15 —-.04 -.02

NoTE.—Two-point linkage was performed using LINKAGE 5.1 and FASTLINK pro-
grams (Lathrop and Lalouel 1984; Cottingham et al. 1993). Six different penetrance
classes were assigned, dependent on the age at onset of the disease. (For family CMT-160,
age groups/mean penetrance are 0-5 years/0.07, 6-10 years/0.31, 11-15 years/0.69, 16—
20 years/0.92, 21-30 years/0.98, and 31-80 years/0.99; for family CMT-176, age groups/
mean penetrance are 0-10 years/0.09, 11-20 years/0.28, 21-30 years/0.56, 31-40 years/
0.80, 41-50 years/0.93, and 51-80 years/0.98.) A 50% disease penetrance was reached
at age 12 years in family CMT-160 and at age 24 years in family CMT-176. Autosomal
dominant inheritance, equal male and female recombination rates, and a DI-CMT gene
frequency of 0.0001 were assumed in the linkage calculations. For each STR marker,
the number of alleles in the calculations was set at the observed allele numbers in the
pedigrees (N), and the allele frequencies were set at 1/N.
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Second, CMT?2A is flanked by D15244 and D1S228 in
sequence contigs NT_021937 and NT_004873, and the
KIF1B gene is contained in NT_021937, thus not over-
lapping with the sequence contigs in the DI-CMTC re-
gion (Ben Othmane et al. 1993; Saito et al. 1997; NCBI
Nucleotides Database [build 33]). Several pedigrees have
been linked to the CMT2A locus (Ben Othmane et al.

1993; Pericak-Vance et al. 1997; Saito et al. 1997; Mug-
lia et al. 2001). It is interesting that no disease-causing
mutations in KIF1B have been reported in these families
so far. On the basis of the linkage data available in the
literature, we cannot exclude the possibility that at least
some families with CMT2A without KIF1B mutations
could map to the DI-CMTC locus. Furthermore, with
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regard to NCV measurements, families with CMT cur-
rently classified as having “CMT2” but with only a lim-
ited number of affected individuals could also be con-
sidered as having “intermediate CMT.”

It is interesting that several families with autosomal
dominant CMT have been reported in which affected
members have highly variable NCVs, ranging from nor-
mal to severely reduced. The electrophysiological phe-
notype thus overlaps the NCV ranges of CMT1 and
CMT?2. In some of these patients, specific mutations in
MPZ (De Jonghe et al. 1999; Mastaglia et al. 1999) or
NE-L (De Jonghe et al. 2001; Jordanova et al. 2003) were
found. In addition, patients with CMTX1 with mutations
in the GJB1/Cx32 gene display variable nerve conduc-
tions. Median NCVs in affected males are in the inter-
mediate range of 30-40 m/s, whereas median NCVs are
often >40 m/s in female carriers (references in Birouk et
al. [1998]). Recently, a mixed demyelinating and axonal
phenotype with variable NCVs has been observed in
an autosomal recessive type of CMT (CMT4A [MIM
606598]) that is due to mutations in the ganglioside-
induced differentiation-associated protein 1 (GDAP1
[MIM 214400]) (Baxter et al. 2002; Cuesta et al. 2002;
Nelis et al. 2002; Boerkoel et al. 2003; Senderek et al.
2003).

In conclusion, we report a novel DI-CMT locus on
1p34-p35 in two unrelated pedigrees with patients hav-
ing intermediate NCV. Mapping the DI-CMTC locus
provides new evidence that intermediate CMT presents
a genetically heterogeneous entity. Clinical and genetic
analysis of additional families with CMT could better
delineate the DI-CMT phenotype and will help to iden-
tify the disease-causing gene in DI-CMTC.
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